Data Mining Penyakit Terbanyak Berdasarkan Decision Tree Algoritma C4.5 Di RSUD Pandan Arang Boyolali

Authors

  • Hafiddhudin Al Mubarok STIKes Mitra Husada Karanganyar
  • Trismianto Asmo Sutrisno STIKes Mitra Husada Karanganyar
  • Sri Sugiarsi Mitra Husada Karanganyar

Keywords:

Data Mining, Most Diseases, Decision Tree, Algorithm C4.5, RapidMiner

Abstract

Top 10 disease data is data on diseases that often appear and occur most often. Data collection of the top 10 diseases is used to determine disease patterns in the community. Decision tree classification method is a model that maps observations of an item so that a conclusion is obtained about the target value of an item described in the form of a tree model. The C4.5 algorithm is method for creating a decision tree based on the training data that has been provided. The purpose of this research is to result in the classification of the most diseases based on the C4.5 decision tree algorithm of Pandan Arang Boyolali Hospital using excel and RapidMiner. This research design is descriptive observational. The data collection technique in this study was observation, with a total net data of 3449 data. The results of this research, there are no differences in results between excel and RapidMiner which results in the classification of the most diseases, which are blocks A00-B99, Z00-Z99, I00-I99, O00-O99, J00-J99, and E00-E90, and 18 rules are obtained. Evaluation of the performance of the C4.5 algorithm decision tree classification model using confusion matrix produces an accuracy value of 25.14%.

Downloads

Download data is not yet available.

References

M. Lailil, D. E. Ratnawati, and R. R. Mp, Data Mining. Malang: UB Press, 2018.

D. Suyanto, Data Mining untuk klasifikasi dan klasterisasi data, 1st ed. Bandung: Infornatika Bandung, 2017.

M. Arhami and M. Nasir, Data Mining-Algoritma dan Implementasi, 1st ed. Yogyakarta: Andi, 2020.

S. M. Turnip and P. Silitonga, “Analisis Pola Penyebaran Penyakit dengan Menggunakan Algoritma C4.5,” Jurnal Teknik Informatika Unika Santo Thomas, vol. 3, no. 1, pp. 1–5, 2018.

Allwine, M. Sakban, and B. G. R. F. Sitepu, “Pengklasifikasian Diagnosa Penyakit Pasien Pengguna BPJS Kesehatan Menggunakan Algoritma C4.5,” Jurnal Bisantara Informatika, vol. 6, no. 1, 2022.

WHO, International Statistical Classification of Diseases and Related Health Problems 10th Revision. 2010.

R. Rafiska, S. Defit, and G. W. Nurcahyo, “Analisis Rekam Medis untuk Menentukan Pola Kelompok Penyakit Menggunakan Algoritma C4.5,” Jurnal Rekayasa Sistem dan Teknologi Informasi, vol. 2, no. 1, pp. 391–396, 2018, [Online]. Available: http://jurnal.iaii.or.id

atul Husna, F. Dewi Pertiwi, and A. Saputra Nasution, “Faktor-Faktor Yang Berhubungan Dengan Kejadian Pneumonia Pada Balita Di Puskesmas Semplak Kota Bogor 2020,” PROMOTOR Jurnal Mahasiswa Kesehatan Masyarakat, vol. 5, no. 3, p. 273, 2022, [Online]. Available: http://ejournal.uika-bogor.ac.id/index.php/PROMOTOR

V. Sagara, B. Aramico, and V. N. Arifin, “Faktor Risiko Kejadian Diare Pada Anak Usia 1-4 Tahun Di Wilayah Kerja Puskesmas Batoh Kota Banda Aceh Tahun 2022,” Jurnal Kesehatan Tambusai, vol. 4, no. 2, pp. 2635–2640, 2023.

W. A. Saputra, K. Mariadi, and G. Somayana, “Karakteristik Penyakit Gastroenteritis Pada Pasien di RSUP Sanglah Denpasar Tahun 2018,” Jurnal Medika Udayana, vol. 10, no. 4, 2021.

N. Maulana, “Pencegahan Dan Penanganan Hipertensi Pada Lansia” Jurnal Peduli Masyarakat, vol. 4, no. 1, pp. 163–168, 2022, [Online]. Available: http://jurnal.globalhealthsciencegroup.com/index.php/JPM

F. Milita, S. Handayani, and B. Setiaji, “Kejadian Diabetes Mellitus Tipe II pada Lanjut Usia di Indonesia (Analisis Riskesdas 2018),” Jurnal Kedokteran Dan Kesehatan, vol. 17, no. 1, pp. 9–20, 2021, [Online]. Available: https://jurnal.umj.ac.id/index.php/JKK

Y. Mardi, “Data Mining Rekam Medis Untuk Menentukan Penyakit Terbanyak Menggunakan Decision Tree C4.5,” Jurnal Sains dan Informatika, vol. 4, no. 1, pp. 40–53, Apr. 2018, doi: 10.22216/jsi.v4i1.3077.

Y. A. Fiandra, S. Defit, and Yuhandri, “Penerapan Algoritma C4.5 untuk Klasifikasi Data Rekam Medis berdasarkan International Classification Diseases (ICD-10),” Jurnal Rekayasa Sistem dan Tenologi Informasi, vol. 2, no. 1, pp. 82–89, 2017, [Online]. Available: http://jurnal.iaii.or.id

I. M. Agus Oka Gunawan, I. D. A. Indah Saraswati, I. D. G. Riswana Agung, and I. P. Eka Putra, “Klasifikasi Penyakit Jantung Menggunakan Algoritma Decision Tree Series C4.5 Dengan Rapidminer,” Jurnal Teknologi Dan Sistem Informasi Bisnis, vol. 5, no. 2, pp. 73–83, Apr. 2023, doi: 10.47233/jteksis.v5i2.775.

B. Aulifia Riski Putra Wahyu, A. Fayi Farozi, C. Putra Mahendra, and R. Kembang Hapsari, “Klasifikasi Penderita Penyakit Diabetes Berdasarkan Decision Tree Menggunakan Algoritma C4.5,” INTEGER: Journal of Information Technology, vol. 8, no. 1, 2023.

Downloads

Published

2025-02-28

How to Cite

Al Mubarok, H. ., Sutrisno, T. A. ., & Sugiarsi, S. . (2025). Data Mining Penyakit Terbanyak Berdasarkan Decision Tree Algoritma C4.5 Di RSUD Pandan Arang Boyolali. Jurnal Ilmiah Perekam Dan Informasi Kesehatan Imelda (JIPIKI), 10(1), 76–88. Retrieved from https://jurnal.uimedan.ac.id/index.php/JIPIKI/article/view/1512